1) Find the cross product of the unit vectors.

a) $\mathbf{j} \times \mathbf{i}$ $-\mathbf{k}$ b) $\mathbf{i} \times \mathbf{j}$ \mathbf{k} c) $\mathbf{k} \times \mathbf{i}$ \mathbf{j} d) $\mathbf{i} \times \mathbf{k}$ $-\mathbf{j}$

a)

2) Find $\|\vec{u} \times \vec{v}\|$ and determine whether $\vec{u} \times \vec{v}$ is directed into the page or out of the page.

3) Given $\vec{u} = \langle 7, 3, 2 \rangle$ and $\vec{v} = \langle 1, -1, 5 \rangle$ find the following:

a)	$\vec{u} \times \vec{v}$	$\langle 17, -33, -10 \rangle$
b)	$\vec{v} \times \vec{u}$	$\langle -17, 33, 10 \rangle$
c)	$\vec{v} \times \vec{v}$	$\langle 0, 0, 0 \rangle$

- 4) Given the following vectors find $\vec{w} = \vec{u} \times \vec{v}$ and show that it is orthogonal to both \vec{u} and \vec{v} .
 - a) $\vec{u} = 2\mathbf{i} 3\mathbf{j} + \mathbf{k}$, $\vec{v} = \mathbf{i} 2\mathbf{j} + \mathbf{k}$ b) $\vec{u} = \mathbf{i} + e^t \mathbf{j} + e^{-t} \mathbf{k}$, $\vec{v} = 2\mathbf{i} + e^t \mathbf{j} - e^{-t} \mathbf{k}$
 - c) $\vec{u} = \langle t, t^2, t^3 \rangle$, $\vec{v} = \langle 1, 2t, 3t^2 \rangle$

a)	$\vec{w} = \langle -1, -1, -1 \rangle$, Use Dot Product to show that they are orthogonal.
b)	$\vec{w} = \langle -2, 3e^{-t}, -e^t \rangle$, Use Dot Product to show that they are orthogonal.
c)	$\vec{w} = \langle t^4, -2t^3, t^2 \rangle$, Use Dot Product to show that they are orthogonal.

5) Find two unit vectors orthogonal to both $\langle 1, -1, 1 \rangle$ and $\langle 0, 4, 4 \rangle$.

/	2	1	1 \	and	/	2	1	1 \
$\langle -$	$\sqrt{6}$,-	$\overline{\sqrt{6}}$	$\overline{\sqrt{6}}/$	anu	1	$\sqrt{6}$	$\sqrt{6}$	$\overline{\sqrt{6}}/$

6) Find the area of the parallelogram that has the given vectors as adjacent sides:

a)
$$\vec{u} = \mathbf{j}, \quad \vec{v} = \mathbf{j} + \mathbf{k}$$

b)
$$\vec{u} = \langle 3, 2, -1 \rangle$$
, $\vec{v} = \langle 1, 2, 3 \rangle$

a) 1 b) $6\sqrt{5}$ 7) Show that $(\vec{u} \times \vec{v}) \cdot \vec{v} = 0$ for all vectors \vec{u} and \vec{v} .

Show by using
$$\vec{u} = \langle u_1, u_2, u_3 \rangle$$
 and $\vec{v} = \langle v_1, v_2, v_3 \rangle$

8) The vertices of a triangle are: (2,1,5), (-1,3,4), and (3,0,6), find the following:

- a) A vector orthogonal to the plane of the triangle.
- b) The area of the triangle.

a)	$\langle 1, 2, 1 \rangle$ or any scalar multiple of this vector.
b)	$\overline{\frac{\sqrt{6}}{2}}$

9) A force of 180 pounds acts on the bracket shown below, determine the magnitude of the moment about A by evaluating $\|\overrightarrow{AB} \times \overrightarrow{F}\|$.

10) Find the volume of the parallelepiped with the given vertices: (0,0,0), (3,0,0), (0,5,1), (2,0,5), (3,5,1), (5,0,5), (2,5,6), (5,5,6).

11) Use the scalar triple product to determine whether the points: (1,0,1), (2,4,6), (3,-1,2), and (6,2,8) lie in the same plane.

Yes

12) A wrench 30 cm long lies along the positive y - axis and grips a bolt at the origin. A force is applied in the direction $\langle 0, 3, -4 \rangle$ at the end of the wrench. Find the magnitude of the force needed to supply 100 J of torque to the bolt.

$\approx 417 N$